Superconvergent discontinuous Galerkin methods for nonlinear elliptic equations

نویسندگان

  • Sangita Yadav
  • Amiya Kumar Pani
  • Eun-Jae Park
چکیده

Based on the analysis of Cockburn et. al. [Math. Comp. 78 (2009), pp. 1-24] for a selfadjoint linear elliptic equation, we first discuss superconvergence results for nonselfadjoint linear elliptic problems using discontinuous Galerkin methods. Further, we have extended our analysis to derive superconvergence results for quasilinear elliptic problems. When piecewise polynomials of degree k ≥ 1 are used to approximate both the potential as well as the flux, it is shown, in this article, that the error estimate for the discrete flux in L2-norm is of order k + 1. Further, based on solving a discrete linear elliptic problem at each element, a suitable postprocessing of the discrete potential is developed and then, it is proved that the resulting post-processed potential converges with order of convergence k + 2 in L2-norm. These results confirm superconvergent results for linear elliptic problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

L2-Error Estimates of the Extrapolated Crank-Nicolson Discontinuous Galerkin Approximations for Nonlinear Sobolev Equations

We analyze discontinuous Galerkin methods with penalty terms, namely, symmetric interior penalty Galerkin methods, to solve nonlinear Sobolev equations. We construct finite element spaces on which we develop fully discrete approximations using extrapolated Crank-Nicolson method. We adopt an appropriate elliptic-type projection, which leads to optimal ∞ L2 error estimates of discontinuous Galerk...

متن کامل

Mixed Interior Penalty Discontinuous Galerkin Methods for Fully Nonlinear Second Order Elliptic and Parabolic Equations in High Dimensions

This article is concerned with developing efficient discontinuous Galerkin methods for approximating viscosity (and classical) solutions of fully nonlinear second-order elliptic and parabolic partial differential equations (PDEs) including the Monge–Ampère equation and the Hamilton–Jacobi–Bellman equation. A general framework for constructing interior penalty discontinuous Galerkin (IP-DG) meth...

متن کامل

A numerical method for solving nonlinear partial differential equations based on Sinc-Galerkin method

In this paper, we consider two dimensional nonlinear elliptic equations of the form $ -{rm div}(a(u,nabla u)) = f $. Then, in order to solve these equations on rectangular domains, we propose a numerical method based on Sinc-Galerkin method. Finally, the presented method is tested on some examples. Numerical results show the accuracy and reliability of the proposed method.

متن کامل

Symmetric Interior Penalty Dg Methods for the Compressible Navier–stokes Equations I: Method Formulation

In this article we consider the development of discontinuous Galerkin finite element methods for the numerical approximation of the compressible Navier–Stokes equations. For the discretization of the leading order terms, we propose employing the generalization of the symmetric version of the interior penalty method, originally developed for the numerical approximation of linear self-adjoint sec...

متن کامل

Superconvergence of the local discontinuous Galerkin method for nonlinear convection-diffusion problems

In this paper, we discuss the superconvergence of the local discontinuous Galerkin methods for nonlinear convection-diffusion equations. We prove that the numerical solution is [Formula: see text]th-order superconvergent to a particular projection of the exact solution, when the upwind flux and the alternating fluxes are used. The proof is valid for arbitrary nonuniform regular meshes and for p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 82  شماره 

صفحات  -

تاریخ انتشار 2013